

ADOxx®Development Space:BIMERR © BOC Group

1. Renovation Process KPI Design Tool

The Renovation process KPI design tool is an application build with ADOxx, a meta-modelling platform

that allows to define your own meta-model and automatically generate the modelling environment

for you accordingly it. Also in this case, like the renovation process design tool, a community version

of the platform is available. The corresponding cloud version will be demonstrated in the final

prototype. The community version library allows to create an ADOxx modelling environment as a

windows desktop application that everyone can freely setup and redistribute.

In the renovation process KPI design tool the meta-model is based on concepts of the balanced

scorecard (Kaplan, Robert S., and Norton, 1992), extended with a data model-type that allow to specify

how the KPIs are retrieved and calculated. In the D6.2 (BIMERR Consortium,2020) has been introduced

the concept of KPIs for the scaffold cost of the renovation facade scenario. The first meta-model

defined is the cause and effect model-type. It allows to define KPIs and Goals with their relations and

group them in specific perspective. In particular:

• Perspective group similar KPIs, like grouping all “Financial” indicators or all “Time” or “Quality”

dependent indicators.

• Goals and sub-goals describe the objective to be achieved.

• KPIs describe measurable data sets that assess in combination with the indicator context –

plan value, real value, thresholds, type of thresholds and meta data about the indicator –, if

the corresponding goal can be achieved or not.

Figure 1 KPI model

Every object in the model has a common set of attributes like a name and a description of the object,

plus a set of specific attributes that characterize it.

ADOxx®Development Space:BIMERR © BOC Group

In the case of Goals and Sub-Goals the specific
attributes refer to the type of the goal that can be
Strategic or Operational and on the aggregation
type of the data that represent how often this goal
is evaluated. Referring on details of the evaluation
of the Goal is possible to specify the procedure
used during its evaluation. The goal, therefore, can
succeed if all its dependencies succeed or if at
least one succeeds. Additionally, if none of these
reflect the goal behaviour, it is possible to provide
the actual algorithm in JavaScript format needed
to evaluate the Goal. In this context the
connection flows between the goal and its
relevant KPIs and sub-goals that determine the
goal dependencies are relevant.

Figure 2 - Goals attributes

ADOxx®Development Space:BIMERR © BOC Group

In the case of KPI objects the specific

attributes are relative to the fields of data

available in the KPI and information on the

target and alert ranges of the KPI value.

The Fields represent what kind of metrics are

available in this KPIs. Usually there is a value

field (cost in this case) that contain the value

of the KPI and an instant time field that

contains at what time the KPI value has been

calculated, but this is not fixed and always

valid, so the user can provide as much as he

need. Every field can also have a specific

measure unit.

Also in this case it is possible to specify the

aggregation type of the data representing

how often the KPI is calculated. KPIs in order

to be meaningful must be associated with

thresholding that in this case are represented

as target and alert ranges. The target range

must contain a formula (as a JavaScript

expression) that uses the field name defined

above, and that specifies the value range that

is the target of our KPI (eg. Cost < 20000).

Figure 3 - KPI Attributes

Using the same approach, it is possible to define one or more alert range that allow to specify when

the KPI is approaching a risky value on the border of the target range. Multiple alert ranges are possible

here, so as example if the cost > 15000 there is a yellow/moderate alert while if the cost > 19000 there

is a red/important alert because the value is approaching the top border of the target range. Ranges

allow to represent information on the threshold of a value (eg. 20000) combined with information of

expected directions of the values (so if the threshold is an upper or lower bound), allowing to represent

cases of discrete values as well.

At the end, it is important to associate the KPI to a metric in order to be correctly calculated. The metric

is defined in the data calculation model that define how the metric value have to be retrieved or

calculated.

ADOxx®Development Space:BIMERR © BOC Group

Figure 4 - Data calculation model

The data calculation model is composed of Metrics and Data Items including dependencies between

them. Metrics (represented as green circles) represent a data in a specific format and contain

information on how the value of this data have to be calculated using as inputs sub-metrics and data

access indicators. The Data Items (represented blue circles) on the other side are able to describe how

a data value is retrieved from an external system that can be as example a remote service, a sensor, a

database or even an Excel sheet. In this context, the data access indicator is strongly dependent on the

Olive microservice framework that is responsible to provide the features to access such external

system.

Also in the data calculation model, every object has a common set of attributes like a name and a

description of the object, plus a set of specific attributes that characterize it.

For the Metric objects such attributes refer to the way the metric is calculated on the basis of its

dependencies. The Input Object Aliases attributes refer to this and allow to specify for every

dependency an alias name to use in the calculation formula. Alias can be any name but must not

contain spaces and start with a number.

The Fields represent what kind of data are available in this metric. Usually there is a value field (cost in

this case) that contain the value of the metric and an instant time field that contain at what time the

metric value has been calculated, but this are not fixed and always valid, so the user can provide as

much as he needs. Every field can optionally have a specific measure unit (Euro in the case of the cost

field) but must specify the formula used to calculate the specific field of the metric. The function can

be described in the form of JavaScript expression and the defined aliases can be accessed and used in

the formula. Fields of dependent objects can be accessed using the dot operator, so if we defined an

alias for a sub-metric and such sub-metric have a field “cost” defined, in the formula this can be

reached writing the alias name followed by a dot followed by the field name (eg. “a.cost”). Every field

defined must contain a calculation formula. If there is no need for a formula like in the case of the

instant time field, this can be taken directly from the dependency (eg. Specifying “b.instant”).

Considering as a sample the metric “Current Scaffold Cost”, that should be calculated multiplying the

scaffold cost per day with the current execution time, we can define such behaviour creating first the

aliases for the sub-metrics “Concrete Scaffold Costs per Day” and “Current execution time in days”

naming respectively “a” and “b”. Then the “cost” field of can be calculated using the function “a.cost

* b.executionTime”, where “a.cost” refer to the “cost” field of the “Concreate Scaffold Cost per Day”

ADOxx®Development Space:BIMERR © BOC Group

sub-metrics, while “b.executionTime” refer to the “executionTime” field of the “Current execution

time in days” sub-metrics. About the “instant” field we used the formula “b.instant” meaning that we

use here the same value of the “instant” field of the sub-metric “Current Execution time in days”.

In case of exotic metrics functions it is possible to provide your own algorithm in JavaScript format that

will calculate the metric fields using the “Custom JS Algorithm attribute”.

Figure 5 - Metric Attributes

The Data Items are able to represent how the data values are collected from external systems through

the microservice framework Olive1. For this purpose the microservice must return the data in a specific

format in order to be recognized. The data must be a JSON object that contain a “columns” array

containing the list of returned field names (that must match the one defined in the fields attributes)

and a “data” array of JSON objects each one containing a key for every field defined in the “columns”

with the appropriate value in string format.

An example of a valid JSON that the Olive microservice must return is the following:

{

 "columns" : ["cost", "instant"],

 "data" : [{

 "cost": "2000",

 "instant": '2020-01-30T11:40:22'

 },{

 "cost" : "1900",

 "instant": "2020-01-29T10:40:50"

 },{

 "cost" : "1800",

 "instant": "2020-01-28T09:40:15"

 }]

}

1 https://www.adoxx.org/live/olive

https://www.adoxx.org/live/olive

ADOxx®Development Space:BIMERR © BOC Group

Also in this case is important to define the data fields that the service return with optional information

on the measure unit for the specific value in the field.

As soon as the microservice in Olive is ready, it is important to refer to it using its unique id and

providing the operation name and its required inputs in terms of input id with appropriate value. This

will be the same input that the microservice expect as a JSON format but explicitly defined key by key.

In the case of the Data Items that contain the results of the optimistic simulation (“Optimistic

Simulation process execution time ms”) the microservice operation used is the “getSimulationResults”

providing as input the parameter “simulationType” with value “o” that in the context of the service

means “give me the result of the optimistic simulation”. The returned JSON contain the fields

“executionTime” as milliseconds value and the “instant” time of the simulation.

Figure 6 - Data Items Attributes

The community version library allows to create an ADOxx modelling environment as a windows

desktop application that everyone can freely setup and redistribute. The renovation process KPI design

tool in this case is based on ADOxx v1.5 and allow to model the renovation process KPIs using the

previously described meta-model in terms of KPIs and Data access models. Additional features are in

this case provided by the ADOxx Community in terms of add-on that the user can install from the

ADOxx community portal www.adoxx.org.

http://www.adoxx.org/

ADOxx®Development Space:BIMERR © BOC Group

Figure 7 Renovation process KPIs design tool community version

ADOxx®Development Space:BIMERR © BOC Group

2. Monitoring and Evaluation Tool for Renovation Processes

The monitoring and evaluation tools for the renovation process are used to support the user in the

evaluation of the current status of the process and on the future behavior.

In the following sections the demonstration of the monitoring cockpits first and of the renovation

process simulation later, are reported.

2.1 Renovation Processes-Oriented KPI Dashboards

The KPI dashboard visualize in a combined view both the backward looking monitoring with the

forward looking simulation results. The dashboard interface is based on configurable widgets where

the KPIs can be visualized in different formats accordingly to the widget features. The KPIs definitions

are taken directly from the renovation process KPIs design tool that is able to export them in a format

recognized by the dashboard. The dashboard use the KPIs information reported in the model in order

to automatically evaluate them, calculating the relative metrics and retrieving the data from the data

sources using the right Olive microservice.

Figure 8 Renovation KPI cockpit use case

2.1.1 Models-based Monitoring Dashboards demonstration

The KPI dashboard is strongly based on the KPI and data model used. A detailed description of the

models created for the BIMERR demonstration is available in the D6.2 (BIMERR Consortium,2020). This

models are focused on the scaffold costs and contain the definition of the following KPIs including their

relative metrics and data sources:

• Measured Scaffold Effective Costs: Is a backward looking KPI that monitor on a scheduled

based time the scaffold current costs.

ADOxx®Development Space:BIMERR © BOC Group

• Simulated Scaffold Optimistic Costs: Is a forward looking KPIs that show the results of the last

simulation performed with optimistic risks evaluation on the scaffold estimated costs.

• Simulated Scaffold Moderate Costs: Is a forward looking KPIs that show the results of the last

simulation performed with moderate risks evaluation on the scaffold estimated costs.

• Simulated Scaffold Pessimistic Costs: Is a forward looking KPIs that show the results of the last

simulation performed with pessimistic risks evaluation on the scaffold estimated costs.

Two dashboards are currently available that support a product view of the KPIs and a process

dependent view.

The first dashboard use four widget to visualize the KPIs: one image map widget and three line chart

widgets. The image map visualize the building facade to renovate using an image from Google Street

View and overlay the values of the previously described KPIs using a color code that immediately reflect

the KPI status (green for KPIs with value in the target range, yellow for KPIs with value in the alert range

and red for KPIs with value outside the target range). The three line chart widgets are used to display

the historical trend of the three simulation results visualizing in a Cartesian chart the estimated scaffold

cost for every performed simulation over time, allowing to analyze the alignments of the simulation

inputs with the real data in the past.

Figure 9 - Backward-looking Monitoring and Forward-Looking Simulation of KPI-Scaffold Costs

ADOxx®Development Space:BIMERR © BOC Group

The second dashboard demonstrates the Process-Oriented Context of the dashboard by the possibility

to link KPIs to different phases of the process. For each time slot of a process can be linked to the actual

as well as to the simulated KPIs.

The process-oriented representation also allows to drill the KPI down either in the process-oriented

view, or using the model-tree, which represents the KPIs as they are modelled in the KPI-model. This

help to understand the cause of a failing KPIs checking how its dependencies behave, finding the root

of the problem.

Hence the process-oriented representation is first an alternative visualization of the dashboard and

second the possibility to additionally introduce the linkage of a process phases to a concrete KPI.

Figure 10 - Simulation Output for KPIs

The intention is that a dashboard can be created where KPIs are linked to different phases of the

process that can be simulated and hence dependencies between phases can be considered on an

aggregated view. In case a complex process is described by several in parallel running construction

sites and each process for each construction site uses simulated KPIs, the aggregating complex process

is the simulated using the dependencies of the underlying processes.

Such complex scenarios require complex modelling and knowledge externalization in the design phase,

and hence may only be appropriate for specific dashboard. A simple simulation of one renovation

process for the simulation of one KPI will be introduced in the next section.

ADOxx®Development Space:BIMERR © BOC Group

2.1.2 Models-based Monitoring Dashboards architecture

The KPI dashboard is a component that is able to perform a marriage between models and data

resulting in a customizable web dashboard. The models contain information about how to retrieve the

data and how to combine them in order to form metrics, and how to use such metrics to evaluate KPIs

and goals. The data are external and obtained through specifics microservices, created with the Olive

framework, able to connect with different type of data sources. At the end the results are displayed

using a widget based interface that is able to display the KPIs and metrics in different formats

depending on the domain and the user experience.

Figure 11 - KPIs Dashboard architecture

The dashboard accept KPIs models provided in a specific JSON format. The Renovation process KPIs

design tool provide a feature to export the KPIs and data model in such specific JSON format. This

model is processed by the model interpreter component that have the responsibility to create an

internal representation of the model collecting all the dependencies, the calculation methods and the

data sources for all the KPIs, goals and metrics in the model.

Such model information are processed by the KPI core component that is responsible to call the

microservices described in the model in order to retrieve the data, apply the calculation functions as

described in the model and make the resulting values available for the user interface. The interaction

of the KPI core with the different microservices is helped by a DAO component that provide also

caching features and an optimized microservice communication. The functions are evaluated in a

component that is able to interpret and validate them in order to avoid security issues.

ADOxx®Development Space:BIMERR © BOC Group

When the evaluated KPIs and Goals are available will be provided to the UI component on widget

request. The widget manager component is responsible to manage the interface for the creation and

configuration of the different widgets giving them also access to the calculated data.

The dashboard provide out of the box four most commonly used widgets but extension are possible

through a plug-in based mechanism:

• Chart widget: is able to visualize a KPI value in a Cartesian chart. The user can configure the

type of chart to use, choosing between horizontal bar chart, vertical bar chart, line chart, curve

chart and radar chart and after that can specify which KPI field show for every axis and an

optional threshold line. As example the “Simulated Scaffold Optimistic Cost” KPI containing

the data fields “cost” and “instant” can be visualized in a line chart selecting for the X axe the

“instant” field and for the Y axe the “cost” field.

Figure 12 - KPI dashboard chart widget

• Table widget: this widget allow to visualize all the details of a configured KPI in a table format.

All the values will be visualized as well as evaluation of the KPI status with a green, yellow, red

indicator.

Figure 13 - KPI dashboard table widget

• Image widget: This widget allow to overlay one or more KPI details over an image. The KPIs

are displayed with a color code that reflect the KPI status and details are visualized moving the

mouse over the indicator.

ADOxx®Development Space:BIMERR © BOC Group

Figure 14 - KPI dashboard image widget

• Tree widget: This widget allow to visualize all the KPI in a collapsible tree view organized

hierarchically or linearly on their dependencies. In this way is possible to identify the root cause

of a problematic KPI or goal simplifying the behavior analysis.

Figure 15 - KPI dashboard tree widget

At the end the UI component is responsible for the rendering of the configured widgets in a docked

layout that the user can configure resizing and moving the widgets around the page with a drag and

drop mechanism.

